Skip to main content

Transient loading of a viscoelastic bushing



This example demonstrates the automatic incrementation capability provided for integration of time-dependent material models and the use of the viscoelastic material model in conjunction with large-strain hyperelasticity in a typical design application. The structure is a bushing, modeled as a hollow, viscoelastic cylinder. The bushing is glued to a rigid, fixed body on the outside and to a rigid shaft on the inside, to which the loading is applied. A static preload is applied to the shaft, which moves the inner shaft off center. This load is held for sufficient time for steady-state response to be obtained. Then a torque is applied instantaneously and held for a long enough period of time to reach steady-state response. We compute the bushing's transient response to these events.

Comments

Popular posts from this blog

MEMS Labs

MEMS National Labs Compiled by AEG http://www.mems.sandia.gov/ http://mems.nist.gov/ http://www.darpa.mil/mto/programs/mems/index.html http://nepp.nasa.gov/index_nasa.cfm/789/ MEMS University Labs This is a comprehensive link to the University Labs working on MEMS area. The name of the Director of the Lab is provided for convenience. http://www.ece.cmu.edu/~mems/ Carnegie Mellon University – Dr Gary Fedder http://www.ece.umn.edu/groups/mems/ University of Minnesota http://www.biomems.uc.edu/ University of Cincinnati – Dr. Chong Ahn http://www.ece.uc.edu/devices/ University of Cincinnati – Dr. Jason Heikenfeld http://www.biomicro.uc.edu/ University of Cincinnati – Dr. Ian Papautsky http://mems.colorado.edu/ University of Colorado at Boulder – Dr. Victor Bright http://www.ece.neu.edu/groups/mfl/ Northeastern University http://www.enme.umd.edu/mml/ University of Maryland – Dr. Don DeVoe http://www.depts.ttu.edu/ntc/Re...

Focused Engineering Solutions by AEG

Focused Engineering Solutions for the Manufacturing Supply Chain by American Engineering Group Computer-Aided Design, Engineering and Manufacturing (CAD/CAE/CAM) are tools that help reduce costs and shorten the design, prototype and production cycle. These computer-aided tools can also help to incorporate Six Sigma, Lean manufacturing and Just-In-Time (JIT) in the supplier processes bringing credibility to new design concepts. American Engineering Group (AEG) is utilizing these tools to provide a Multisourcing Manufacturing Solution (MMS) by bringing new automotive components to the marketplace in the shortest possible time, with the lowest cost, and highest quality. CAD/CAE/CAM are becoming more popular as a standard analysis tools in the automotive industry for design, failure and manufacturing process analyses. Another notable reason for this popularity is the recent changes in automotive specification requirement for parts comprised of new materials or designs. The automotive ind...

AEG Torsional Damper - brief description

American Engineering Group (AEG) has developed a new “Dual Torsional Damper System”. This new AEG system design will allow varying static properties and provide dynamic shock and vibration mitigation over a wide load range for automotive and industrial applications. This dual structure system provides both axial and radial damping. The torsional damper system will have two elastomer elements with top element functions as a vibration damping element and the bottom spherical elastomer element as a noise & harness damping element. AEG dual mode damper system includes a spherical soft viscous bushing hub designed for being rigidly connected to a drive shaft, and an inertia ring, connected to the hub by means of a thin Polyurethane material layer. This dual-layer elastomer damper system is designed for torsional vibration reduction of the crankshaft system on multi-cylinder engine for vehicles. AEG polyurethane torsional dampers are designed to provide significant reduction of sou...