This example illustrates the use of the nonlinear isotropic/kinematic hardening material model to simulate the response of a notched beam under cyclic loading. The model has two features to simulate plastic hardening in cyclic loading conditions: the center of the yield surface moves in stress space (kinematic hardening behavior), and the size of the yield surface evolves with inelastic deformation (isotropic hardening behavior). The component investigated in this example is a notched beam subjected to a cyclic 4-point bending load.
MEMS National Labs Compiled by AEG http://www.mems.sandia.gov/ http://mems.nist.gov/ http://www.darpa.mil/mto/programs/mems/index.html http://nepp.nasa.gov/index_nasa.cfm/789/ MEMS University Labs This is a comprehensive link to the University Labs working on MEMS area. The name of the Director of the Lab is provided for convenience. http://www.ece.cmu.edu/~mems/ Carnegie Mellon University – Dr Gary Fedder http://www.ece.umn.edu/groups/mems/ University of Minnesota http://www.biomems.uc.edu/ University of Cincinnati – Dr. Chong Ahn http://www.ece.uc.edu/devices/ University of Cincinnati – Dr. Jason Heikenfeld http://www.biomicro.uc.edu/ University of Cincinnati – Dr. Ian Papautsky http://mems.colorado.edu/ University of Colorado at Boulder – Dr. Victor Bright http://www.ece.neu.edu/groups/mfl/ Northeastern University http://www.enme.umd.edu/mml/ University of Maryland – Dr. Don DeVoe http://www.depts.ttu.edu/ntc/Re...
Comments