This example illustrates the use of the nonlinear isotropic/kinematic hardening material model to simulate the response of a notched beam under cyclic loading. The model has two features to simulate plastic hardening in cyclic loading conditions: the center of the yield surface moves in stress space (kinematic hardening behavior), and the size of the yield surface evolves with inelastic deformation (isotropic hardening behavior). The component investigated in this example is a notched beam subjected to a cyclic 4-point bending load.
American Engineering Group (AEG) has developed a new “Dual Torsional Damper System”. This new AEG system design will allow varying static properties and provide dynamic shock and vibration mitigation over a wide load range for automotive and industrial applications. This dual structure system provides both axial and radial damping. The torsional damper system will have two elastomer elements with top element functions as a vibration damping element and the bottom spherical elastomer element as a noise & harness damping element. AEG dual mode damper system includes a spherical soft viscous bushing hub designed for being rigidly connected to a drive shaft, and an inertia ring, connected to the hub by means of a thin Polyurethane material layer. This dual-layer elastomer damper system is designed for torsional vibration reduction of the crankshaft system on multi-cylinder engine for vehicles. AEG polyurethane torsional dampers are designed to provide significant reduction of sou...
Comments