Skip to main content

Elastic-plastic collapse of a thin-walled elbow under in-plane bending and internal pressure



Elbows are used in piping systems because they ovalize more readily than straight pipes and, thus, provide flexibility in response to thermal expansion and other loadings that impose significant displacements on the system. Thus, even under pure bending, complex interaction occurs between an elbow and the adjacent straight pipe segments; the elbow causes some ovalization in the straight pipe runs, which in turn tend to stiffen the elbow. This interaction can create significant axial gradients of bending strain in the elbow, especially in cases where the elbow is very flexible. The analyses predict the response up to quite large rotations across the elbow, so as to investigate possible collapse of the pipe and, particularly, the effect of internal pressure on that collapse.

Comments

Popular posts from this blog

MEMS Labs

MEMS National Labs Compiled by AEG http://www.mems.sandia.gov/ http://mems.nist.gov/ http://www.darpa.mil/mto/programs/mems/index.html http://nepp.nasa.gov/index_nasa.cfm/789/ MEMS University Labs This is a comprehensive link to the University Labs working on MEMS area. The name of the Director of the Lab is provided for convenience. http://www.ece.cmu.edu/~mems/ Carnegie Mellon University – Dr Gary Fedder http://www.ece.umn.edu/groups/mems/ University of Minnesota http://www.biomems.uc.edu/ University of Cincinnati – Dr. Chong Ahn http://www.ece.uc.edu/devices/ University of Cincinnati – Dr. Jason Heikenfeld http://www.biomicro.uc.edu/ University of Cincinnati – Dr. Ian Papautsky http://mems.colorado.edu/ University of Colorado at Boulder – Dr. Victor Bright http://www.ece.neu.edu/groups/mfl/ Northeastern University http://www.enme.umd.edu/mml/ University of Maryland – Dr. Don DeVoe http://www.depts.ttu.edu/ntc/Re...

Focused Engineering Solutions by AEG

Focused Engineering Solutions for the Manufacturing Supply Chain by American Engineering Group Computer-Aided Design, Engineering and Manufacturing (CAD/CAE/CAM) are tools that help reduce costs and shorten the design, prototype and production cycle. These computer-aided tools can also help to incorporate Six Sigma, Lean manufacturing and Just-In-Time (JIT) in the supplier processes bringing credibility to new design concepts. American Engineering Group (AEG) is utilizing these tools to provide a Multisourcing Manufacturing Solution (MMS) by bringing new automotive components to the marketplace in the shortest possible time, with the lowest cost, and highest quality. CAD/CAE/CAM are becoming more popular as a standard analysis tools in the automotive industry for design, failure and manufacturing process analyses. Another notable reason for this popularity is the recent changes in automotive specification requirement for parts comprised of new materials or designs. The automotive ind...

AEG Torsional Damper - brief description

American Engineering Group (AEG) has developed a new “Dual Torsional Damper System”. This new AEG system design will allow varying static properties and provide dynamic shock and vibration mitigation over a wide load range for automotive and industrial applications. This dual structure system provides both axial and radial damping. The torsional damper system will have two elastomer elements with top element functions as a vibration damping element and the bottom spherical elastomer element as a noise & harness damping element. AEG dual mode damper system includes a spherical soft viscous bushing hub designed for being rigidly connected to a drive shaft, and an inertia ring, connected to the hub by means of a thin Polyurethane material layer. This dual-layer elastomer damper system is designed for torsional vibration reduction of the crankshaft system on multi-cylinder engine for vehicles. AEG polyurethane torsional dampers are designed to provide significant reduction of sou...