Skip to main content

Self-contact in rubber/foam components: rubber gasket



This example demonstrates the use of the single-surface contact capability available for two-dimensional large-sliding analysis. Components that deform and change their shape substantially can fold and have different parts of the surface come into contact with each other. In such cases it can be difficult to predict at the outset of the analysis where such contact may occur and, therefore, it can be difficult to define two independent surfaces to make up a contact pair.
This model is used to analyze an oil pan gasket, which enhances the sealing of the oil pan against the engine block. The primary objective is to reach or exceed a threshold value of contact pressure where oil will not leak at the gasket bead/cover/engine block interfaces.

Comments

Popular posts from this blog

AEG Torsional Damper - brief description

American Engineering Group(AEG) has developed a new “Dual Torsional Damper System”. This new AEG system design will allow varying static properties and provide dynamic shock and vibration mitigation over a wide load range for automotive and industrial applications. This dual structure system provides both axial and radial damping. The torsional damper system will have two elastomer elements with top element functions as a vibration damping element and the bottom spherical elastomer element as a noise & harness damping element.AEG dual mode damper system includes a spherical soft viscous bushing hub designed for being rigidly connected to a drive shaft, and an inertia ring, connected to the hub by means of a thin Polyurethane material layer. This dual-layer elastomer damper system is designed for torsional vibration reduction of the crankshaft system on multi-cylinder engine for vehicles. AEG polyurethane torsional dampers are designed to provide significant reduction of sound and …

AEG Carbon Fiber-Elastomer Composite Bipolar Plate for PEM Fuel Cells

AEG Carbon Fiber-Elastomer Composite Bipolar Plate for PEM Fuel Cells
Fuel cells constitute one of the most promising sources of environmental friendly energy for the future. These systems produce electrical energy by converting the chemical energy stored in a fuel, such as hydrogen or methanol, through oxidation-reduction reactions. A proton exchange membrane (PEM) fuel cell is a stack of electrochemical cell systems (Figure) placed in series. Since the electrons must transit from the anode of one cell to the cathode of the next cell, electrical conductivity through the plate is a main requirement. Another important requirement is the low permeability to the reacting gases or to ions. The bipolar plates should remain chemically inert for an extended period of time. The bipolar plates also should be lightweight and easily manufactured using mass-production technologies. Cost reduction is the most critical issue for automotive industry to achieve the practical use of proton exchange mem…

Submodeling of a stacked sheet metal assembly

Sheet metal stampings stacked and fitted on top of each other and secured together via mechanical fasteners such as bolts or rivets are commonly used in the automotive industry. Examples include seat belt anchors and seating track assemblies. The submodeling capability in ABAQUS facilitates economical, yet detailed, prediction of the ultimate strength and integrity of such jointed assemblies. A global model analysis of an assembly is first performed to capture the overall deformation of the system. Subsequently, the displacement results of this global analysis are used to drive the boundaries of a submodeled region of critical concern. The submodeling methodology provides accurate modeling that is more economical than using a globally refined mesh in a single analysis