Skip to main content

Focused Engineering Solutions by AEG

Focused Engineering Solutions for the Manufacturing Supply Chain by American Engineering Group

Computer-Aided Design, Engineering and Manufacturing (CAD/CAE/CAM) are tools that help reduce costs and shorten the design, prototype and production cycle. These computer-aided tools can also help to incorporate Six Sigma, Lean manufacturing and Just-In-Time (JIT) in the supplier processes bringing credibility to new design concepts. American Engineering Group (AEG) is utilizing these tools to provide a Multisourcing Manufacturing Solution (MMS) by bringing new automotive components to the marketplace in the shortest possible time, with the lowest cost, and highest quality.

CAD/CAE/CAM are becoming more popular as a standard analysis tools in the automotive industry for design, failure and manufacturing process analyses. Another notable reason for this popularity is the recent changes in automotive specification requirement for parts comprised of new materials or designs. The automotive industry is trying to make components that could withstand 500,000 miles of minimum warranty.

The automotive OEM companies have been changing their way of doing business. Traditionally the automotive companies would design and develop a product, perform comprehensive testing, send prints and specifications to suppliers for quotes. The most cost competitive supplier got the business. To remain competitive on a global basis, the automotive companies now are relying on their suppliers to provide product design, analysis, testing and manufacturing. The new approach is to get product through a Multisourcing Manufacturing Provider (MMP). This is an evolution of the old supply and demand chains into new one-to-one MMP relationship. In the past, it may have been enough to have the lowest cost. Now, a supplier must have world class quality, excellent service, low cost, be globally competitive and deliver just in time. In order to obtain these goals, it is essential that manufacturers reduce their product development design cycle time and shortened time to market. CAD/CAE/CAM are tremendous productivity tools for the engineer to create, test, modify and manufacture design ideas.

Comments

Popular posts from this blog

AEG Torsional Damper - brief description

American Engineering Group (AEG) has developed a new “Dual Torsional Damper System”. This new AEG system design will allow varying static properties and provide dynamic shock and vibration mitigation over a wide load range for automotive and industrial applications. This dual structure system provides both axial and radial damping. The torsional damper system will have two elastomer elements with top element functions as a vibration damping element and the bottom spherical elastomer element as a noise & harness damping element. AEG dual mode damper system includes a spherical soft viscous bushing hub designed for being rigidly connected to a drive shaft, and an inertia ring, connected to the hub by means of a thin Polyurethane material layer. This dual-layer elastomer damper system is designed for torsional vibration reduction of the crankshaft system on multi-cylinder engine for vehicles. AEG polyurethane torsional dampers are designed to provide significant reduction of sou

Pressure penetration analysis of an air duct kiss seal

Seals are common structural components that often require design analyses. In this example, a nonlinear finite element analysis of seals is performed. Pressure penetration effects between the seal and the contacting surfaces are to be considered in these analyses, to make routine analyses of seals more realistic and accurate. Analyses of clutch seals, threaded connectors, car door seals and air duct kiss seals are some applications where pressure penetration effects are important. The surface-based pressure penetration capability is used to simulate pressure penetration between contacting surfaces.

Challenges in the Finite Element Analysis of Tire Design using ABAQUS

Finite Element Analysis of Vehicle and Tire has become a very important aspect of a tire design and failure analysis to most Tire companies. Tire modeling with ABAQUS is a very complicated process involving complex materials like hyperelastic rubber and textile reinforcements, large model size, prolonged simulation time and various convergence issues. This white paper intends to help in understanding the challenges in tire analysis and several tips and tricks that makes a difference in the quality of the results and processing time. AEG hopes that this article will be useful to ABAQUS users working in the field of tire design and analysis. A general tire has the following major tire components Tread Belt Region Inner Liner Sidewall Region Inner Carcass Region Bead Filler Region Apex/Chafer Region Beads Reinforcements Nylon Cap Ply Steel Belts Carcass Ply Constructing the structure of the tire and modeling of each component is the first step into the analysis. AEG foun