Skip to main content

MEMS Lectures Collection

Here are a few lectures by professors from different schools on some topics related to Micro-Electromechanical Systems (MEMS):

Composed by AEG

- by GK Ananthasuresh
- by Dr.Bruce Gale
- by Thomas B Jones
- by Dr.Liliy Dong
- by Prof. Martin Schmidt
- by Prof. Carol Livermore
- by Prof. Andreas G Andreou
- by Prof. Ming Wu
- by Prof. Reza Ghodssi

Comments

Popular posts from this blog

AEG Torsional Damper - brief description

American Engineering Group (AEG) has developed a new “Dual Torsional Damper System”. This new AEG system design will allow varying static properties and provide dynamic shock and vibration mitigation over a wide load range for automotive and industrial applications. This dual structure system provides both axial and radial damping. The torsional damper system will have two elastomer elements with top element functions as a vibration damping element and the bottom spherical elastomer element as a noise & harness damping element. AEG dual mode damper system includes a spherical soft viscous bushing hub designed for being rigidly connected to a drive shaft, and an inertia ring, connected to the hub by means of a thin Polyurethane material layer. This dual-layer elastomer damper system is designed for torsional vibration reduction of the crankshaft system on multi-cylinder engine for vehicles. AEG polyurethane torsional dampers are designed to provide significant reduction of sou...

Shell-to-solid submodeling and shell-to-solid coupling of a pipe joint

Submodeling is the technique used in ABAQUS for analyzing a local part of a model with a refined mesh, based on interpolation of the solution from an initial global model (usually with a coarser mesh) onto the nodes on the appropriate parts of the boundary of the submodel. Shell-to-solid submodeling models a region with solid elements, when the global model is made up of shell elements. Shell-to-solid coupling is a feature in ABAQUS by which three-dimensional shell meshes can be coupled automatically to three-dimensional solid meshes. The analysis is tested as a static process in ABAQUS/Standard

Self-contact in rubber/foam components: jounce bumper

Components that deform and change their shape substantially can fold and have different parts of the surface come into contact with each other. In such cases it can be difficult to predict at the outset of the analysis where such contact may occur and, therefore, it can be difficult to define two independent surfaces to make up a contact pair. A jounce bumper, sometimes referred to as a “helper spring,” is a highly compressible component that is used as part of the shock isolation system in a vehicle. It is typically located above the coil spring that connects the wheels to the frame. Microcellular material is used because of its high compressibility and low Poisson's ratio value at all but fully compressed configurations. The bumper initially sits against a fixed flat rigid surface on one end; on the other end, another flat rigid surface is used to model the compression of the bumper. The geometry of the bumper is such that it folds in three different locations. Separate surfaces ...